
A Prototype of Decision Support System for Credit Risk Performance

Yunjia Ma Yinan Wang
yma54@simon.rochester.edu ywang401@simon.rochester.edu

Hang Zou Jingyi Wu
hzou8@simon.rochester.edu jwu121@simon.rochester.edu

April 28, 2022

The HELOC dataset and more information about it, including instructions to download, can be found here.
Our interactive interface can be found here.

1 Introduction

Society increasingly relies on credit to make purchases and other financial decisions right
now. Credit scores are a financial tool that determines more than just the loans you can get and
your pay interest rates. Landlords use them to decide who can rent their apartments. Insurance
companies use credit scores to set premiums for car and home insurance. Bank and credit card
companies use credit scores to determine who can apply for and repay credit cards. People need
good credit to live well and comfortably.

In this project, we utilized the dataset of Home Equity Line of Credit(HELOC)
applications to predict whether they will pay back their HELOC account. Our vision is to
develop a predictive model to access credit risk and combine this with an interactive interface
that the bank/credit card company’s sales representatives can use to decide whether to accept or
reject an application. To achieve this end, we applied eight predictive models in machine
learning to help us in model selection. They are Logistic Regression, Linear SVM, Naive Bayes,
LDA, Decision Tree, Random Forest, ADABoost, KNN, Polynomial Kernel SVM, and Radial
Basis Function (RBF) Kernel SVM. For our interface, we created a simple platform that allows
sales representatives to investigate our previous model and adjust different predictors to easily
understand applicants' credit risk.

2 Evaluate Predictive Models

● Prepare the Data for ML Algorithms

The dataset has 9871 rows and 24 columns. The first 23 columns (Features) contain
applications’ credit histories which the company knew before the approval, and the last column
(RiskPerformace) holds the outcome of the loan disbursement. This step aims to handle missing
values and transform the data matrix to smooth model training and evaluation steps.

https://community.fico.com/s/explainable-machine-learning-challenge?tabset-3158a=2
https://share.streamlit.io/jyiwu/jyiwu.github.io/main/sl/hw5_interface_3.py

The dataset was separated randomly into a train set and a test set with a test size of 0.2,
representing 20% of the dataset in the test split. We also used a cross-validation approach and
further split the train set for model selection with a test size of 0.25. Thus, the proportion of train
to validation to test is 0.6:0.2:0.2, which means we would use 60% of the data to train models,
20% of the data for model selection, and the remaining for final evaluation. Since the value in
the last column is labeled as “Bad” and “Good”, we converted them to 0 and 1 for easy
computation. Three missing values are introduced in the data dictionary, encoded by -7, -8, and
-9 in the dataset. Combining with the feature Explanation, we plotted the default risk as a
function of the ExternalRiskEstimate and the corresponding counts. The missing value -9 means
“no bureau record or no investigation.” Therefore, all values -9 were removed where the feature
(ExternalRiskEstimate) was missing because it would cause bias in prediction. The other missing
values, -7 and -8, seem to break the trend of risk, which behave differently from the rest.
Therefore, a pipeline was assigned to extend the train set and test set with binary variables that
indicated these two values and replaced these two values with the average in each column. After
all, the transformed dataset was ready for further modeling selection. Based on the preprocessed
train set, the correlation matrix is created to show correlation coefficients among all features in
preparation for later feature selection, as shown below in Figure 1.

● Model Training and Evaluation/Selection

​​ The linear models we applied are Logistic Regression, Linear SVM, Bernoulli Naive
Bayes, and LDA. The classification models we used are Decision Tree, Random Forest,
ADABoost, KNN, Polynomial Kernel SVM, and Radial Basis Function (RBF) Kernel SVM.
After performing hyper-parameter tuning to improve model performance, we generated accuracy
for all train, validation, and test sets and then chose the best models for further feature
engineering.

First, we used the train set to train four linear models and compare them. It is because
linear models often work well, and we can easily explain predictions from coefficients. For
logistic regression, we set the parameter max_iter to 10000 to ensure algorithm coverage, so the
estimation process would reach a stable parameter value in iteration. We used the default settings
for the other three models to see performances. To store coefficients and intercepts
corresponding to models, we generated a data frame linear_coefficients and a new data
frame linear_coefficients_scaled, which holds the linear coefficients scaled by
intercept values to help us understand the differences between models.The following Table 1
includes the accuracy of four models.

Model Name Train Acc Vali Acc Test Acc

Logistic Regression 0.740 0.738 0.738

Linear SVC 0.518 0.528 0.518

Bernoulli Naive Bayes 0.673 0.665 0.672

LDA 0.740 0.737 0.738

Table 1: Accuracy of Linear Models

Next, we switch to working with Tree-Based Models: Decision Tree, Random Forest and
ADABoost. Decision trees provide an effective approach to decision-making because they can
list issues clearly so that all choices can be challenged, which helps usefully analyze the possible
consequences of a decision. We visualized the tree and found the accuracy is close to other
models we trained before. Therefore, we applied grid search and generated random values for the
hyper-parameters to see any improvement. As a result, it appears that we don’t seem to have
significantly improved performance, and we may have simply chosen the decision stump. We
created an ensemble of trees Random Forest to see further performance rather than a single
increasingly complex tree. By tuning the hyper-parameters with the best param we gathered in a
grid search, our final performance has significantly increased compared to the decision stump.
The other ensemble of trees we used is ADABoosting. We didn’t do a grid search at this time
because the accuracy has already outperformed the previous models by using the default
hyperparameters. The following Table 2 includes the accuracy of these three models.

Model Name Train Acc Vali Acc Test Acc

Decision Tree 0.732 0.697 0.697

Random Forest 0.734 0.736 0.733

ADABoost 0.746 0.740 0.736

Table 2: Accuracy of Tree-Based Models

The other classification models we used in the prediction are KNN, Polynomial Kernel
SVM, and RBF Kernel SVM. For KNN model, as one of the most used classification models, its
n_neighbor ranging from 1 to 50 are tested for later selection for the optimal. As the plot shown
below (Figure 2), the testing accuracy of KNN model starts to converge to around 0.70 since
n_neighbor equals 15. Therefore the optimal value for n_neighbor is 15. Polynomial Kernal
SVM is a kernel function commonly used in support vector machines (SVMs) and other
kernelized models. For Polynomial Kernal SVM, the degree is tested from range 1 to 10, and the
result of test accuracy peaks at a degree equal to 5, shown in Figure 3; therefore, 5 is chosen as
the optimal. RBF Kernel is similar to KNN. It has the advantages of KNN and also overcomes
the space complexity problem, so we simply tried it with the default setting.

Model Name Train Acc Vali Acc Test Acc

KNN 0.726 0.697 0.708

Polynomial Kernel SVM 0.737 0.725 0.729

RBF Kernel SVM 0.735 0.717 0.729

Table 3: Accuracy of Other Classification Models

● Feature Selection

Feature selection is used to reduce irrelevant, redundant features or noise. As the
correlation graph (Figure 1) shows, we see some features are highly correlated with other
features. The feature selection makes a tradeoff between the accuracy and number of features to
keep the sparsity principle, lower computational cost, and better model interpretability.After we
chose those three models, we used a threshold of 0.2 to filter the average contribution of each
feature to the linear function. The feature selection is based on the combination of average
contribution and correlation. Moreover, Instead of using training, validation, and test sets, it
applied cross-validation to validate the accuracy and checked the overfitting. As the accuracy
shows below, about ten features can perform similarly (among 0.01 difference) as the original
feature sets.

For Logistic Regression model, 11 features are preserved ExternalRiskEstimate,
AverageMInFile, NumSatisfactoryTrades, PercentTradesNeverDelq,
MSinceMostRecentDelq, MaxDelq2PublicRecLast12M, PercentInstallTrades,
NumInqLast6M, NetFractionRevolvingBurden, NetFractionInstallBurden,

NumRevolvingTradesWBalance, with the final cross-validated accuracy of 0.727, which is
very close to the test accuracy before feature engineering, and that means the abandoned features
have little impact to the model.

For LDA model, 11 features are preserved and they are ExternalRiskEstimate,
PercentTradesNeverDelq, AverageMInFile, NumSatisfactoryTrades,
NumInqLast6M, NetFractionRevolvingBurden, PercentInstallTrades,
NumRevolvingTradesWBalance,MSinceMostRecentDelq, NetFractionInstallBurden,

MSinceMostRecentDelq=-7. The final cross-validated accuracy is 0.726.
For Random Forest model, 10 features are selected: ExternalRiskEstimate,

NetFractionRevolvingBurden, AverageMInFile,
NumBank2NatlTradesWHighUtilization, PercentTradesNeverDelq,
PercentTradesWBalance, MSinceMostRecentInqexcl7days, MSinceMostRecentDelq,

MaxDelq2PublicRecLast12M, MSinceOldestTradeOpen. The final cross-validated
accuracy is 0.72.

● Best Model Out

Overall, the model with the best performance is Logistic Regression, with a
cross-validated accuracy of 0.727. This trained model is saved for further prediction generation
in the interface site. In the Interface, the predicted accuracy is similar to 0.727 as the
cross-validated accuracy.

4 Interface Design

We used Streamlit to build an interactive interface that sales representatives in a bank or
credit card company can use to decide on accepting or rejecting applications. The users can get
the predictive credit risk by simply entering the value of variables through sidebars.

When building the interface, we first create the title of the interface. Then we build the
control panel for 11 features. The sidebar is easy for customers who don’t have any technical
proficiency in adjusting these parameters. After that, we applied the adjusted logistic regression
model to the interface.

The interface displays the input value, variables’ coefficient, and coefficient*value of all
variables, which indicates how those variables affect the risk assessment. Besides, the interface
gives the prediction value, model accuracy, and the final assessment below the data frame. Our
users can explain the assessment by comparing multiplication values and determining the most
influential variable.

5 Summary

Combining all the knowledge from class, the project develops a predictive model and
builds a decision support system. The whole project includes preprocessing data for machine
learning, training models by applying learning algorithms and validating models to select the
best one, selecting features to improve model performance, and applying the adjusted model to
build an interactive decision support system. The predictive model that we developed and
applied to the interface is a logistic regression model with an accuracy of 0.727. The interactive
DSS interface is designed in minimalism, as it can be understood and operated by everyone.

APPENDIX

Figure 1: Correlation Matrix

Figure 2: KNN Model

Figure 3: Polynomial Kernal SVM Model

Figure 4: Interface Design

Figure 5: Feature Explanation

Figure 6: MaxDelq Table

Figure 7: Missing Values

